608 Физика

 

Четверг

14.03.2024г. ГРУППА  401.  ФИЗИКА.   ТЕМА « Кристаллические и аморфные тела»

      Твердые тела отличаются постоянством формы и объема и делятся на кристаллические и аморфные.                                                                                                  Кристаллические тела

Кристаллические тела (кристаллы) - это твердые тела, атомы или молекулы которых занимают упорядоченные положения в пространстве.

Частицы кристаллических тел образуют в пространстве правильную кристаллическую пространственную решетку

 Каждому химическому веществу, находящемуся в кристаллическом состоянии, соответствует определенная кристаллическая решетка, которая задает физические свойства кристалла.

Знаете ли вы?

        Много лет назад в Петербурге на одном из неотапливаемых складов лежали большие запасы белых оловянных блестящих пуговиц. И вдруг они начали темнеть, терять блеск и рассыпаться в порошок. За несколько дней горы пуговиц превратились в груду серого порошка. "Оловянная чума" - так  прозвали эту «болезнь» белого олова. А это была всего лишь перестройка порядка атомов в кристаллах олова. Олово, переходя из белой разновидности в серую, рассыпается в порошок. И белое и серое олово - это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества. Кристаллы могут иметь различную форму и ограничены плоскими гранями.

  В природе существуют: а) монокристаллы - это одиночные однородные кристаллы, имеющие форму правильных многоугольников и обладающие непрерывной кристаллической решеткой

 Монокристаллы поваренной соли

   б) поликристаллы - это кристаллические тела, сросшиеся из мелких, хаотически расположенных кристаллов. Большинство твердых тел имеет поликристаллическую структуру (металлы, камни, песок, сахар).

Поликристаллы висмута:

 

Анизотропия кристаллов

В кристаллах наблюдается анизотропия - зависимость физических свойств (механической прочности, электропроводности, теплопроводности, преломления и поглощения света, дифракции и др.) от направления внутри кристалла.

Анизотропия наблюдается в основном в монокристаллах. В поликристаллах (например, в большом куске металла) анизотропия в обычном состоянии не проявляется. Поликристаллы состоят из большого количества мелких кристаллических зерен. Хотя каждый из них обладает анизотропией, но за счет беспорядочности их расположения поликристаллическое тело в целом утрачивает анизотропию. Любое кристаллическое вещество плавится и кристаллизуется при строго определенной температуре плавления: железо — при 1530°,олово - при 232°, кварц - при 1713°, ртуть - при минус 38°. Нарушить порядок расположения в кристалле частицы могут, только если он начал плавиться. Пока есть порядок частиц, есть кристаллическая решетка - существует кристалл. Нарушился строй частиц - значит, кристалл расплавился - превратился в жидкость, или испарился - перешел в пар.

Аморфные тела

        Аморфные тела не имеют строгого порядка в расположении атомов и молекул (стекло, смола, янтарь, канифоль

  В аморфных телах наблюдается изотропия - их физические свойства одинаковы по всем направлениям. При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства (при ударах раскалываются на куски как твердые тела) и текучесть (при длительном воздействии текут как жидкости). При низких температурах аморфные тела по своим свойствам напоминают твердые тела, а при высоких температурах - подобны очень вязким жидкостям. Аморфные тела не имеют определенной температуры плавления, а значит, и температуры кристаллизации. При нагревании они постепенно размягчаются. Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Интересно!       Одно и то же вещество может встречаться и в кристаллическом и в некристаллическом виде. В жидком расплаве вещества частицы движутся совершенно беспорядочно. Если, например, расплавить сахар, то: 1. если расплав застывает медленно, спокойно, то частицы собираются в ровные ряды и образуются кристаллы. Так получается сахарный песок или кусковой сахар; 2. если остывание происходит очень быстро, то частицы не успевают построиться правильными рядами и расплав затвердевает некристаллическим. Так, если вылить расплавленный сахар в холодную воду или на очень холодное блюдце, образуется сахарный леденец, некристаллический сахар. Удивительно! С течением времени некристаллическое вещество может «переродиться», или, точнее, закристаллизоваться, частицы в них собираются в правильные ряды. Только срок для разных веществ различен: для сахара это несколько месяцев, а для камня — миллионы лет. Пусть леденец полежит спокойно месяца два-три .Он покроется рыхлой корочкой. Посмотрите на нее в лупу: это мелкие кристаллики сахара. В некристаллическом сахаре начался рост кристаллов. Подождите еще несколько месяцев — и уже не только корочка, но и весь леденец закристаллизуется. Даже наше обыкновенное оконное стекло может закристаллизоваться. Очень старое стекло становится иногда совершенно мутным, потому что в нем образуется масса мелких непрозрачных кристаллов. На стекольных заводах иногда в печи образуется «козел», то есть глыба кристаллического стекла. Это кристаллическое стекло очень прочное. Легче разрушить печь, чем выбить из нее упрямого «козла». Исследовав его, ученые создали новый очень прочный материал из стекла - ситалл. Это стеклокристаллический материал, полученный в результате объёмной кристаллизации стекла. Любопытно! Могут существовать разные кристаллические формы одного и того же вещества. Например, углерод.

 Графит - это кристаллический углерод. Из графита сделаны стержни карандашей, которые оставляют след на бумаге при легком надавливании. Структура графита слоиста. Слои графита легко сдвигаются, поэтому чешуйки графита пристают к бумаге при письме.

 Но существует и другая форма кристаллического углерода - алмаз. Так расположены атомы углерода в кристалле графита (слева) и алмаза (справа).

 

  Алмаз - самый твердый на земле минерал. Алмазом режут стекло и распиливают камни, применяют для бурения глубинных скважинах, полируют сверхтвердые сплавы, алмазы используют для производства тончайшей металлической проволоки диаметром до тысячных долей миллиметра, например, вольфрамовых нитей для электроламп.

ЗАДАНИЕ:

Ответить на вопросы теста

Вопрос 1

1Стекло – это кристаллическое вещество или аморфное?

а) кристаллическое

б) аморфное

в) может быть кристаллическим и аморфным.

Вопрос 2

2. Почему алмаз имеет большую прочность, чем графит?

а) алмаз - драгоценный камень

б) форма кристаллической решётки алмаза одинаково сопротивляется разрушающим силам во всех направлениях.

в) алмаз не проводит электричество.

Вопрос 3

3. Как ведут себя аморфные тела при внешних воздействиях?

А) не изменяют свою форму

Б) раскалываются на мелкие куски

В) подобно твердым веществам

Вопрос 4

4. Чему равна определенная температура плавления у аморфных тел?

А) определенной температуры нет

Б) 100 0С

В) 0 0С

Вопрос 5

5Крупинка соли - это пример вещества в

а)Монокристаллическом состоянии;

б)Поликристаллическом состоянии;

в)Аморфном состоянии;

Вопрос 6

6. Пластические деформации:

а) Исчезают по снятии деформирующих сил;

б) Не исчезают по снятии деформирующих сил;

в) Возникают из-за наличия дефектов в кристаллах;

Вопрос 7

7. Кручение:

а) Особый случай изгиба

б)  Особый случай растяжения;

в)  Особый случай сдвига;

Вопрос 8

8Как называется зависимость физических свойств от направления внутри кристалла?

А) диффузия

Б) анизотропия

В) кристаллизация

Вопрос 9

9Твердое тело, состоящее из большого числа маленьких кристалликов, называют:

А) монокристаллическим

Б) поликристаллическим

В) аморфным

Вопрос 10

10. Почему в таблице температур плавления веществ не указано стекло?

а) стекло аморфно и не имеет определённой температуры плавления


14.03.24г ГРУППА 608.  ФИЗИКА. ТЕМА   «Характеристика жидкого состояния вещества. Капиллярные явления»

В отличие от газов между молекулами жидкости действуют достаточно большие силы взаимного притяжения, что определяет своеобразный характер молекулярного движения. Тепловое движение молекулы жидкости включает колебательное и поступательное движения. Каждая молекула в течение какого-то времени колеблется около определенной точки равновесия, затем перемещается и снова занимает новое равновесное положение. Это определяет ее текучесть. Силы межмолекулярного притяжения не дают молекулам при их движении далеко отходить друг от друга. Суммарный эффект притяжения молекул можно представить, как внутреннее давление жидкостей, которое достигает очень больших значений. Этим и объясняются постоянство объема и практическая  несжимаемость  жидкостей, хотя они легко принимают любую форму.

Свойства жидкостей зависят также от объема молекул, формы и полярности их. Если молекулы жидкости полярны, то происходит объединение (ассоциация) двух и более молекул в сложный комплекс. Такие жидкости называют ассоциированными жидкостями. Ассоциированные жидкости (вода, ацетон, спирты) имеют более высокие температуры кипения, обладают меньшей летучестью, более высокой диэлектрической проницаемостью. Например, этиловый спирт и диметиловый эфир имеют одинаковую молекулярную формулу (С2Н6О). Спирт является ассоциированной жидкостью и кипит при более высокой температуре, чем диметиловый эфир, который относится к неассоциированным жидкостям.

Жидкое состояние характеризуют такие физические свойства, как плотность, вязкость, поверхностное натяжение.

Поверхностное натяжение.

Состояние молекул, находящихся в поверхностном слое, существенно отличается от состояния молекул в глубине жидкости. 

 Для верхней молекулы в нижней полусфере окажется много молекул, а в верхней – значительно меньше, так как снизу находится жидкость, а сверху – пар и воздух. Поэтому для верхней молекулы равнодействующая молекулярных сил притяжения в нижней полусфере много больше равнодействующей молекулярных сил в верхней полусфере.

Таким образом, все молекулы жидкости, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость, которое называют молекулярным давлением.

Силы, действующие в горизонтальной плоскости, стягивают поверхность жидкости. Они называются силами поверхностного натяжения

Поверхностное натяжение — физическая величина, равная отношению силы F поверхностного натяжения, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине l этой границы

Единица поверхностного натяжения – ньютон на метр (Н/м).

Поверхностное натяжение различно для разных жидкостей и зависит от температуры.

Обычно поверхностное натяжение уменьшается с возрастанием температуры и при критической температуре, когда плотность жидкости и пара одинаковы, поверхностное натяжение жидкости равно нулю.

Вещества, которые уменьшают поверхностное натяжение, называют поверхностно – активными (спирт, мыло, стиральный порошок)

Чтобы увеличить площадь поверхности жидкости требуется выполнить работу против поверхностного натяжения.

Имеется другое определение коэффициента поверхностного натяжения — энергетическое. Оно исходит из того, что если площадь поверхности жидкости увеличивается, то некоторое количество молекул из ее объема поднимается на слой поверхности. С этой целью внешние силы совершают работу против молекулярных сил сцепления молекул. Величина данной работы будет пропорциональна изменению площади поверхности жидкости:

Коэффициент пропорциональности σ и называется поверхностным натяжением жидкости.

 

Вязкость  (Па·с) – свойство оказывать сопротивление перемещению одной части жидкости относительно другой. В практической жизни человек сталкивается с большим множеством жидких систем, вязкость которых различна, – вода, молоко, растительные масла, сметана, мед, соки, патока и т.д.

Вязкость жидкостей обусловлена межмолекулярным воздействием, ограничивающим подвижность молекул. Она зависит от природы жидкости, температуры, давления.

Для измерения вязкости служат приборы, называемые вискозиметрами. Выбор вискозиметра и метода определения вязкости зависит от состояния исследуемой системы и ее концентрации.

Для жидкостей с малой величиной вязкости или небольшой концентрацией широко используют вискозиметры капиллярного типа.

Значение поверхностного натяжения

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В 1-й половине 19 в. на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов).

Во 2-й половине 19 в. Дж. Гиббс развил термодинамическую теорию поверхностных явлений, в которой решающую роль играет поверхностное натяжение. Среди современных актуальных проблем - развитие молекулярной теории поверхностного натяжения различных жидкостей, включая расплавленные металлы.

Силы поверхностного натяжения играют существенную роль в явлениях природы, биологии, медицине, в различных современных технологиях, полиграфии, технике, в физиологии нашего организма.  Без этих сил мы не могли бы писать чернилами. Обычная ручка не зачерпнула бы чернил из чернильницы, а автоматическая сразу же поставила бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки: пена не образовалась бы. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма. Проявления сил поверхностного натяжения столь многообразны, что даже перечислить их все нет возможности.

В медицине измеряют динамическое и равновесное поверхностное натяжение сыворотки венозной крови, по которым можно диагностировать заболевание и вести контроль над проводимым лечением. Установлено, что вода с низким поверхностным натяжением биологически более доступна. Она легче вступает в молекулярные взаимодействия, тогда клеткам не надо будет тратить энергию на преодоление поверхностного натяжения.

Непрерывно растут объёмы печати на полимерных плёнках благодаря бурному развитию упаковочной индустрии, высокому спросу на потребительские товары в красочной полимерной упаковке. Важное условие грамотного внедрения подобных технологий — точное определение условий их применения в полиграфических процессах. В полиграфии обработка пластика перед печатью необходима для того, чтобы краска ложилась на материал. Причина заключается в поверхностном натяжении материала. Результат определяется тем, как жидкость смачивает поверхность изделия. Смачивание считается оптимальным, когда капля жидкости остается там же, где она была нанесена. В других случаях жидкость может скатываться в каплю, либо, наоборот, растекаться. Оба случая в равной степени приводят к отрицательным результатам во время переноса краски.

Некоторые выводы:

1. Жидкость может смачивать и не смачивать твёрдое тело.
2. Коэффициент поверхностного натяжения зависит от рода жидкости.
3. Коэффициент поверхностного натяжения зависит от температуры .T ↑σ ↓
4. Высота подъёма жидкости в капилляре зависит от его диаметра. d ↑ h ↓
5. Сила поверхностного натяжения зависит от длины свободной поверхности жидкости. l ↑ F ↑

          При соприкосновении жидкости с твердым телом ее поверхность искривляется по-разному в зависимости от сил взаимодействия между ними.

Угол между касательной к поверхности жидкости и твердого тела называется углом смачивания θ. Если θ < π/2, то жидкость смачивающая, а если θ > π/2, то несмачивающая.

 Смачивание – силы притяжения между молекулами жидкости больше, чем между жидкостью и твердым телом

Несмачивание  больше сила притяжения между молекулами жидкости и твердого тела

 


 


Смачивание и несмачивание – понятия относительные. Жидкость может смачивать одну поверхность и не смачивать другую.


Капиллярные явления

Капилляр – это тонкая трубка, в которой жидкость может подниматься или опускаться в зависимости от смачивания или несмачивания.

Капиллярные явления – явления изменения высоты жидкости в тонких трубках по сравнению с широкими сосудами.      В трубках с узким сечением поверхность жидкости имеет вид сферы (мениск). Если жидкость смачивающая поверхность сосуда, то образуется вогнутый мениск, если несмачивающая – выпуклый.

 


           Если поверхность жидкости вогнутая, то давление жидкости под ней меньше, поскольку силы поверхностного натяжения направлены из жидкости по касательной к поверхности.

Лапласово давление (давление под поверхностью жидкости) – дополнительное давление, создаваемое силами поверхностного натяжения.

.

Если узкую трубку с открытым концом поместить в жидкость, то жидкость из-за избыточного давления под поверхностью будет подниматься (если жидкость смачивающая) или опускаться (если жидкость несмачивающая), так как избыточного давления нет.




Жидкость поднимается или опускается на такую высоту, на которой выравниваются давления столба жидкости и избыточное давление поверхностного натяжения

Как видим из формулы высота зависит от рода жидкости , плотности жидкости и радиуса капилляра:

  - чем больше  плотность жидкости, тем меньше высота;

  -  чем больше радиус капилляра, тем меньше высота

Тест по физике  «Поверхностное натяжение»

1 вариант

1. Чем вызвано поверхностное натяжение?

А. Притяжением молекул поверхностного слоя к мо­лекулам внутри жидкости.
Б. Отталкиванием молекул поверхностного слоя от молекул внутри жидкости.
В. Действием на молекулы жидкости силы тяжести.

2. От чего зависит коэффициент поверхностного натяже­ния жидкости?

А. Только от рода жидкости и наличия примесей.
Б. Только от температуры жидкости.
В. От рода жидкости, ее температуры и наличия в ней примесей.

3. Какую работу нужно совершить, чтобы выдуть мыль­ный пузырь диаметром 14 см? Поверхностное натяжение мыльного раствора равно 0,04 Н/м.

А. 6,9  10-3 Дж
Б. 4,9 
 10-3 Дж
В. 2,9 
 10-3 Дж

4. В каком из сосудов вода смачивает капилляр (рис. 34)?

А. 1 и 2
Б. 3
В. 1 и 3

5. При погружении в воду ка­пиллярной стеклянной трубки радиусом r жидкость в трубке поднялась на высоту h над уровнем жидкости в сосуде. Какой будет высота подъема жидкости в стеклянной трубке радиусом 3r?

А. 3h

ЖЕЛАЮ  УСПЕХА!

Комментариев нет:

Отправить комментарий

  УРОК №114 19.03.2024. ГРУППА 601. ФИЗИКА  Контрольная работа по теме: “Законы постоянного тока” Вариант 1. Часть А А1. Электрический ток ...