понедельник, 31 мая 2021 г.

 

ГРУППА  306.  ФИЗИКА. ТЕМА «Батарея конденсаторов. Энергия конденсаторов»

 Несколько конденсаторов, соединенных вместе, образуют батарею конденсаторов.

Различают последовательноепараллельное  и смешанное соединение конденсаторов

 


 

Движение заряженной частицы в конденсаторе


 


 Энергия заряженного конденсатора

Энергия определяется по формуле  



 

Решение задач:

Задача 1.

Плоский конденсатор заполнили диэлектриком с диэлектрической проницаемостью, равной 2. Энергия конденсатора без диэлектрика равна 20 мкДж. Чему равна энергия конденсатора после заполнения диэлектриком? Считать, что источник питания отключен от конденсатора.

Решение

Энергия конденсатора до заполнения диэлектриком равна:


После заполнения емкость конденсатора изменится:


Энергия конденсатора после заполнения:


Ответ: 40 мкФ.

Задача  №2 на последовательное и параллельное соединение конденсаторов

Условие

На рисунке изображена батарея конденсаторов. Каждый конденсатор имеет емкость 1 мкФ. Найдите емкость батареи.


Решение

Как видим, часть конденсаторов соединена параллельно, а часть последовательно. Это типичный пример смешанного соединения конденсаторов. Алгоритм решения задач при смешанном соединении конденсаторов сводится к тому, чтобы упростить схему и свести все только к параллельному или последовательному соединению.

Конденсаторы 3 и 4 соединены параллельно. Складывая их емкость, получаем в итоге последовательное соединение четырех конденсаторов: 1, 2, 5 и 3-4. Для параллельного соединения:

Для последовательного соединения:

Ответ: 0,285 мкФ.

ЗАДАНИЕ

Решить самостоятельно

Задача 1.

Определить ёмкость батареи, состоящей из двух конденсаторов ёмкостью 10пкФ и 5 пкФ, соединённых последовательно.

Задача 2

Конденсатор электроёмкостью 0,5 Ф был заряжен до напряжения 4В. Затем к нему подключили параллельно незаряженный конденсатор электроёмкостью 0,5 Ф.

Какова энергия системы из двух конденсаторов после их соединения.

 



Начало формы













 



 ГРУППА 205     ФИЗИКА.  Контрольная работа по теме «КВАНТОВЫЕ СВОЙСТВА СВЕТА».

1 ВАРИАНТ.

1.Корпускулярные свойства света проявляются во время:

А) Дисперсии                        в)  Фотоэффекта

Б) дифракции                       г)   интерференции

2.  На поверхность металла падает излучение. Скорость фотоэлектронов, вылетающих из металла, зависит:

А) от расстояния до источника излучения      

Б)  интенсивности падающего света

В)  угла падения излучения на поверхность металла

Г) частоты излучения источника.

3. По какой формуле можно вычислить импульс  фотона?

А)   h                               б)    h                             в)    hc                          г)  mc2

4.Установить соответствие между названием физической величины и её определением:

А) частота излучения                                    1. λ

Б) импульс фотона                                        2.  

В)  энергия кванта излучения                     3.  p

Г)  скорость фотоэлектронов                      4.  E

                                                                           5.   v

5. Установить соответствие между названием физической величины и её единицей измерения:

А)  импульс фотона                                        1. Па

Б)    энергия излучения                                 2. Н с

В)  длина волны                                              3. Н

Г)  давление света                                          4. Е

                                                                             5. м

6. Задерживающее напряжение зависит:

А)  от максимальной кинетической энергии           б) частоты падающего света

В)  от падающего светопотока                                    г)  массы электрона

 

7.  Кто из учёных удостоен Нобелевской премии  за работы по теории фотоэффекта:

А)  Планк        б) Столетов     в) Эйнштейн          г) Ньютон

 

8.Чему равна энергия фотона, соответствующая световой волне частотой 

6,3∙ 1014 Гц?

А) 10-27 Дж        б)  1,35∙ 1023 Дж           в)  3∙ 10-19  Дж               г)  4.2∙ 10-19 Дж

 

9. Модуль импульса фотона в первом пучке света в 2 раза больше, чем во втором. Отношение частоты света первого пучка к частоте второго равно:

1.    1                           2.  2                             3.  ½

 

 10  В каком случае фотоэффект возможен?

А)  h√ ≥ A                 б)   h√ ≤ A                       в)    h√ = A

 

ЗАДАЧА.

Определите длину волны ультрафиолетового света, падающего на пластинку из цинка, если скорость вылетающих из неё  электронов равна 2000км/с. Работа  выхода электрона из цинка равна 6,4∙ 10-19 Дж.  Постоянная Планка равна  6,63∙ 10 Дж∙ с.

 ГРУППА  205. ФИЗИКА.  ТЕМА " ДАВЛЕНИЕ И ХИМИЧЕСКОЕ  ДЕЙСТВИЕ СВЕТА"

       В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым А.С., который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, p=4*10-7 Па.

 Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняют тот факт, что хвосты комет обычно направлены от ядра кометы в сторону, противоположную Солнцу. Световое давление вызывает изменение орбит искусственных спутников Земли. Если в космосе развернуть щиты и управлять ими как парусами, то с их помощью можно перемещать корабль с одной космической орбиты на другую. Ученые рассчитали, что в районе Земли на каждый 1 м2 поверхности будет действовать сила от солнечных лучей порядка 0,9 мг. Казалось бы, ну что эта за сила? И все же ею не пренебрегают, когда речь заходит о межпланетных полетах. Если не сделать соответствующие поправки, то, например, станция типа “Венера” при приземлении на поверхность планеты могла бы промахнуться на 1000 км. Световое давление является источником помех в космических полетах.

Возникновение светового давления с позиций квантовой теории света: Свет — это поток фотонов, каждый из фотонов обладает импульсом р= mc. При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит на тело действует сила.

Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае? Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.

Сила давления света в случае отражения будет в 2 раза больше, чем в случае поглощения, т.е. световое давление в реальных условиях обусловлено как поглощением, так и отражением фотонов.

Чем обусловлено световое давление, если поверхность черная (в основном поглощением фотонов).

Световое давление принадлежит к числу тех оптических явлений, которые могут быть объяснены с позиций как квантовой теории света, так и волновой.

Как же объяснить световое давление на основе волновой теории?

Предположим, что световая волна падает на поверхность тела по нормали, сила светового давления тоже по нормали в сторону распространения света. Это следует с точки зрения волновой теории: из чего состоят все тела? Из молекул, атомов (электронов, протонов и нейтронов). На заряженные частицы будут действовать силы со стороны электрического поля волны. Эта сила равна F=lE.

На движущиеся в магнитном поле заряженные частицы будут действовать магнитная составляющая электромагнитной волны - сила Лоренца. Сила Лоренца рассчитывается по формуле F=gVBsinα, а направление этой силы определяется по правилу левой руки.

Электромагнитная волна может оказывать воздействие только на заряженные частицы. Световое давление можно объяснить действием световой волны на заряженные частицы, находящиеся в теле.

Вектор напряженности электрического поля и вектор магнитной индукции в электромагнитной волне взаимно перпендикулярны.

Рассмотрим действие электромагнитной волны на положительный заряд. Какие силы будут действовать на заряд? Электрическая сила F=lE будет действовать в сторону вектора напряженности электрического поля. Значит, в ту же сторону начнет смещаться заряд под действием электрической силы.

Но эта сила не совпадает по направлению с силой светового давления. Так как заряд под действием электрической силы начнет двигаться, то наго будет действовать магнитное поле волны - сила Лоренца направлена внутрь тела, а световое давление представляет собой сумму Лоренцовых сил, действующих на все положительные заряды, находящиеся в теле.

Но в теле есть и отрицательные электроны. Электроны должны двигаться против поля Е, так как имеют отрицательный заряд. На электроны сила Лоренца будет действовать в ту же сторону, то есть внутрь тела. Эти силы Лоренца в совокупности и создают световое давление. Суммарная сила, действующая на электроны поверхности металла и определяет силу светового давления.

Под действием света происходят химические реакции, которые называют фотохимическими.

Химические действия света.

   Фотохимия изучает химические реакции, которые протекают под действием света (при его поглощении). Фотохимические процессы лежат в основе фотографии, фотосинтеза и механизма зрения. Химическое действие света является еще одним доказательством квантовой теории света.

 1. Фотобумага освещается пучком света. Через некоторое время бумага темнеет. 

2. В сосуд с водой помещают зеленое растение, которое накрывают стеклянной воронкой. На последнюю надевают резиновую трубку, конец которой закрывают зажимом. Сосуд выставляют на свет. Через некоторое время листья на свету покрываются пузырьками газа, которые всплывают и собираются в узкой части воронки. К концу резиновой трубки подносят тлеющую лучину, и затем зажим расслабляют. Лучина воспламеняется. Этот газ - кислород. В темноте это явление не имеет места.

Фотографический процесс. Процесс получения фотографии состоит из четырех операций: фотосъемка, проявление пленки, ее закрепление, фотопечать. Фотосъемка - получение действительного изображения объекта в светочувствительном слое фотопленки. Фотоэмульсия: желатин, мелкие зерна AgBr. Квант энергии hd отрывает электроны от некоторых ионов брома, которые захватываются ионами серебра. В зернах AgBr образуются нейтральные атомы, количество которых пропорционально освещенности пленки. Эти атомы образуют скрытое изображение объекта съемки. Проявление пленки. Проявитель гидрохитон или метон восстанавливает бромистое серебро в свободное металлическое серебро. В процессе закрепления в растворе тиосульфата натрияNa2S2O3 происходит удаление из фотослоя всех светочувствительных зерен солей серебра, не успевших разложиться. Закрепление завершается промывкой пленки в воде. Фотопечать - перенос изображения с фотопленки на светочувствительную фотобумагу. Негативное изображение с фотопленки проецируется на фотобумагу, где образуется скрытое позитивное изображение. Затем эту фотобумагу с изображением проявляют, фиксируют, промывают, сушат и получают фотографию объекта.

    Наибольшее значение имеет химический процесс, который разыгрывается под действием света в зеленых частях растений. Как известно, дыхание всех живых существ сопровождается окислением углерода, входящего в состав их тела. Сгорание углерода в углекислоту (СО2) сопровождается освобождением энергии, которая и используется животными при их движении. Точно так же главный источник энергии, используемый в технике, это процесс сжигания топлива, то есть опять-таки процесс образования СO2. Обратный процесс расщепления СO2происходит в зеленых частях растений под действием солнечного света, как фотохимический процесс. Расщепление углекислоты сопровождается дальнейшими химическими превращениями, приводящими, в конце концов, к образованию тех основных органических соединений, из которых построено тело растений и животных. Наряду с этим процессом, идущим в природе в гигантских масштабах, известно и множество других фотохимических превращений. Например, выцветание многих красок, состоящих в окислении этих красок кислородом воздуха под действием света. Покрасив раствором некоторой краски (цианина) слой желатина, мы можем сохранять такую окрашенную пластинку довольно долго. Но если направить на нее интенсивный пучок света (от Солнца или дугового фонаря), то пластинка в тех местах, куда падает свет, выцветает так быстро, что эти участки становятся бесцветными на глазах. Отбеливание холста, растянутого на солнцепеке, по существу представляет собой фотохимическое выцветание. Многие фотохимические процессы в настоящее время используются в технике для ускоренного получения тех или иных веществ. Большинство таких процессов идет особенно энергично под действием коротковолнового ультрафиолетового света.

ЗАДАНИЕ:

1. Т.к. вы изучаете химию, запишите уравнение реакции фотосинтеза.

2. Квант света - -красного или фиолетового цвета- оказывает большее давление на идеально отражающую поверхность

3. Какие реакции называются фотохимическими?

 

 

Р

 


 

 ГРУППА  306.  ФИЗИКА. ТЕМА « Диэлектрики в электростатическом поле»

Электростатическое поле - это электрическое поле, образованное неподвижными электрическими зарядами. Свободные электроны - электроны, способные свободно перемещаться внутри проводника ( в основном в металлах) под действием электрического поля;

 Электростатическое поле внутри проводника - внутри проводника электростатического поля нет ( Е = 0 ), что справедливо для заряженного проводника и для незаряженного проводника, внесенного во внешнее электростатическое поле. Почему? - т.к. существует явление электростатической индукции, т.е. явление разделения зарядов в проводнике, внесенном в электростатическое поле ( Е внешнее) с образованием нового электростатического поля ( Е внутр.) внутри проводника.

Внутри проводника оба поля ( Евнешн. и Евнутр.) компенсируют друг друга, тогда внутри проводника Е = 0.

Заряды можно разделить:




ДИЭЛКТРИКИ В ЭЛКТРИЧЕСКОМ ПОЛЕ

 Внутри диэлектрика может существовать электрическое поле! Электрические свойства нейтральных атомов и молекул:

Нейтральный атом -положительный заряд ( ядро) сосредоточен в центре, а отрицательный заряд - это его электронная оболочка;

 Считается, что из-за большой скорости движения электронов по орбитам центр распределения отрицательного заряда совпадает с центром атома. Молекула - чаще всего - это система ионов с зарядами противоположных знаков , т.к. внешние электроны слабо связаны с ядрами и могут переходить к другим атомам.

Электрический диполь - молекула, в целом нейтральная , но центры распределения противоположных по знаку зарядов разнесены; рассматривается, как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся внутри молекулы на некотором расстоянии друг от друга.

 

Существуют 2 вида диэлектриков ( они различаются строением молекул) :

 1) полярные - молекулы, у которых центры положительного и отрицательного зарядов не совпадают (спирты, вода и др.);

2) неполярные - атомы и молекулы, у которых центры распределения зарядов совпадают (инертные газы, кислород, водород, полиэтилен и др.).

 ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ Поляризация диэлектриков в электрическом поле это смещение положительного и отрицательного зарядов в противоположные стороны, т.е. ориентация молекул.

Поляризация полярных диэлектриков Диэлектрик вне электрического поля - в результате теплового движения электрические диполи ориентированы беспорядочно на поверхности и внутри диэлектрика. q = 0 и Eвнутр = 0

Диэлектрик в однородном электрическом поле - на диполи действуют силы, создают моменты сил и поворачивают диполи вдоль силовых линий электрического поля

Но ориентация диполей - только частичная, т.к. мешает тепловое движение. На поверхности диэлектрика возникают связанные заряды, а внутри диэлектрика заряды диполей компенсируют друг друга. Таким образом, средний связанный заряд диэлектрика = 0.

Поляризация неполярных диэлектриков - тоже поляризуются в электрическом поле:

положительные и отрицательные заряды молекул смещаются, центры распределения зарядов перестают совпадать (как диполи), на поверхности диэлектрика возникает связанный заряд, а внутри электрическое поле лишь ослабляется


 Ослабление поля зависит от свойств диэлектрика.»

 ВЫПОЛНИТЬ ЗАДАНИЕ:

Тест. Проводники и диэлектрики в электростатическом поле

Вопрос 1

Выберете верные утверждения

  • Напряженность внутри проводника, находящегося в электростатическом поле, равна нулю.
  • Напряженность внутри диэлектрика, находящегося в электростатическом поле, равна нулю.
  • В полярных диэлектриках, находящихся в электростатическом поле возникает явление поляризации.
  • В неполярных диэлектриках, находящихся в электростатическом поле возникает явление поляризации.

Вопрос 2

Сопоставьте явление с его следствием

  • Электростатическая индукция
  • Поляризация
  • Электромагнитная индукция

Вопрос 3

Как называются вещества, способные проводить электрический ток?

Вопрос 4

Разгадайте ребус.

Вопрос 5

Сопоставьте так, чтобы получились верные утверждения

          Заряды, сообщённые проводнику, располагаются

  • Суммарный заряд любой внутренней области проводника
  • Электростатическое поле в проводнике
  • Возле поверхности проводника силовые линии ЭСП всегда

Вопрос 6

Укажите истинность утверждений.

  • Электрический диполь - система двух равных по модулю и противоположных по знаку зарядов, расположенных на некотором расстоянии друг от друга.
  • У полярных диэлектриков центры распределения зарядов совпадают.
  • У неполярных диэлектриков центры распределения зарядов совпадают.
  • У полярных диэлектриков центры распределения зарядов не совпадают.
  • Смещение положительных и отрицательных связанных зарядов диэлектрика в противоположные стороны называется поляризацией.

Вопрос 7

Как называется диэлектрик, изображённый на рисунке


неполярный диэлектрик

поляризованный диэлектрик

  • неполяризованный диэлектрик
  • полярный диэлектрик
  • вакуум

Вопрос 10

На рисунке изображён





 

  УРОК №114 19.03.2024. ГРУППА 601. ФИЗИКА  Контрольная работа по теме: “Законы постоянного тока” Вариант 1. Часть А А1. Электрический ток ...