ГРУППА 208. Термоядерные реакции. Применение ядерной энергии
Ядерные реакции между легкими атомными ядрами, протекающие при очень высоких температурах (107- 108 К), называются термоядерными реакциями. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. В этих реакциях ядрам, испытывающим взаимное кулоновское отталкивание, удается, преодолев соответствующий электростатический барьер, сблизиться на расстояние порядка радиуса действия ядерных сил притяжения и совершить ту или иную экзоэнергетическую (т. е. сопровождающуюся выделением энергии) ядерную перестройку.
Под «выделением энергии» подразумевается выделение в продуктах реакции избыточной кинетической энергии, равной увеличению суммарной энергии связи. Таким образом, относительно рыхлые ядра перестраиваются в более прочно связанные, а поскольку ядра с наибольшей энергией связи на один нуклон находятся в средней части периодической системы Менделеева, то наиболее типичным механизмом экзоэнергетической реакции является слияние (синтез) легчайших ядер в более тяжелые.
Ниже приведены несколько основных реакций слияния ядер и указаны для них значения энерговыделения Q. d означает дейтрон − ядро 2Н, t означает тритон − ядро 3Н.
d + d → t + p + 3.25 МэВ,
t + d → 4He + n + 17.6 МэВ,
3He + d → 4He + p + 18.3 МэВ.
Термоядерные реакции во Вселенной
Термоядерные реакции в звездах являются основным источником энергии звезд и механизмом образования ядер химических элементов. Для нормальных звезд главным процессом является сгорание водорода и превращение его в гелий. Четыре протона через цепочку ядерных реакций превращаются в ядро гелия
Углеродно-азотный цикл – последовательность термоядерных реакций в звездах с участием катализаторов, приводящая к образованию гелия из водорода.
Для звезд-гигантов с плотными, выгоревшими (по содержанию H) ядрами существенны гелиевый и неоновый циклы термоядерных реакций. Они протекают при значительно более высоких температурах и плотностях, чем PP–CN-циклы. Основной реакцией гелиевого цикла, идущей начиная с T ≈ 200 млн. К, является т. н. процесс Солпитера (3α-реакция):
(процесс двухступенчатый, идущий через промежуточное ядро 8Be).
Далее могут следовать реакции:
Если продукты реакции гелиевого цикла вступят в контакт с Н, то осуществляется неоновый (Ne – Na) цикл, в котором ядро 20Ne играет роль катализатора для процесса сгорания Н в Не. Последовательность реакций здесь вполне аналогична CN-циклу, только ядра 12C, 13N, 13C, 14N, 15O, 15N заменяются соответствующими ядрами 20Ne, 21Na, 21Ne, 22Na, 23Mg, 23Na. Мощность этого цикла как источника энергии невелика. Но он, по-видимому, имеет большое значение для нуклеосинтеза, т. к. одно из промежуточных ядер цикла (21Ne) может служить источником нейтронов:
На Земле самоподдерживающиеся термоядерные реакции с выделением огромной энергии осуществлялись в течение очень короткого времени (10-7–10-6 сек) при взрывах водородных бомб. Одной из основных термоядерных реакций, обеспечивающих энерговыделение при таких взрывах, является реакция слияния двух тяжёлых изотопов водорода (дейтерия и трития) в ядро гелия с испусканием нейтрона:
2Н + 3Н
При этом освобождается энергия 17.6 МэВ.
В настоящее время ведутся работы по созданию термоядерного реактора, где ядерную энергию в промышленных масштабах предполагается получать за счёт управляемого термоядерного синтеза.
Устройство для проведения термоядерных реакций – термоядерный реактор – находится в стадии разработки. Основное требование, которому должен удовлетворять реактор, заключается в том, чтобы энерговыделение в результате термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции.
Типы термоядерных реакторов
К первому относятся реакторы, которым энергия от внешних источников необходима только для зажигания термоядерной реакции. Далее реакция поддерживается за счет выделяющейся в плазме энергии. Например, в дейтерий-тритиевой смеси на поддержание высокой температуры (Т ≈ 8 кэВ или 108 К) расходуется энергия α-частиц (3,52 МэВ), образующихся в ходе реакций при их кулоновском торможении в плазме.
К другому типу реакторов относятся те, в которых для поддержания горения реакций недостаточно энергии, выделяющейся в плазме в виде заряженных продуктов реакции, а необходима энергия от внешних источников. Такие реакторы принято называть реакторами с поддержанием горения термоядерных реакций. Это происходит в тех реакторах, где велики энергетические потери, например открытая магнитная ловушка.
ЗАДАНИЕ:
1. Что можно сказать о массе покоя при делении лёгких ядер?
2. При каких температурах происходит слияние лёгких ядер? (
3. Что такое термоядерная реакция?
4. Что необходимо для слияния ядер и как можно преодолеть кулоновское отталкивание ядер? (
5. Во сколько раз при слиянии дейтерия с тритием выделяется больше энергии, чем при делении урана )
6. Какое происхождение имеет энергия излучения Солнца и звёзд?
7. Чем сопровождаются термоядерные реакции?
8. Какая реакция является перспективной реакцией неисчерпаемого источника энергии? (
9. Какая энергия в этой реакции выделяется?
11. Как можно удержать плазму?
12. Какое ещё кроме энергетического преимущества есть при термоядерных реакциях?
13. Какую реакцию удалось осуществить?
Комментариев нет:
Отправить комментарий