пятница, 26 ноября 2021 г.

 

           26.11.2021г. ГРУППА 201. МАТЕМАТИКА. ТЕМА  «ПОНЯТИЕ  ОБЪЁМА. КУБ. ПАРАЛЛЕЛЕПИПЕД. ПРИЗМА»

  С понятием объёмного тела, отличающегося от плоской фигуры, мы познакомились ещё в начальной школе.

Объёмом принято называть положительную величину, характеризующую часть пространства, занимаемую телом, и определяемую формой и линейными размерами этого тела.

Мы можем вычислить объём тела точно так же, как ранее находили площадь фигуры. Объём принято измерять в единицах измерения объёма (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах и так далее. За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (обозначение: см3). По аналогии, можно за единицу измерения объёма принять кубический миллиметр (1 мм3), кубический метр (1 м3) и тому подобное.

Объём выражается в положительных числах. Это число показывает, сколько единиц измерения содержится в теле. Например, сколько кубических миллиметров в аквариуме, сколько кубических метров в бассейне и так далее.

Объём обозначается заглавной латинской буквой V.

Пример:

Объём книги 400 кубических сантиметров запишут: V = 400 см3.

Рассмотрим свойства объёмов.

Свойство № 1. Равные тела имеют равные объёмы. Это означает, что если два тела идентичны, то есть имеют равное количество единиц измерения и частей, то равны и их объёмы. Например, 2 одинаковых пакета молока равны в объёме.

Свойство № 2. Если тело составлено из нескольких тел, то его объём равен сумме объёмов этих тел.

Следствие из основных свойств объёмов.

Объём куба с ребром 1/n равен 1/n3

 


Объём прямоугольного параллелепипеда

Теорема

Объём прямоугольного параллелепипеда равен произведению трёх его измерений.

V = a ∙ b ∙ c..

Примеры и разбор решения заданий тренировочного модуля.

№1.         Длины сторон основания прямоугольного параллелепипеда равны 15 см и 20 см. Высота параллелепипеда равна диагонали основания. Найдите объём этого параллелепипеда.

Решение:

Найдём длину диагонали основания, для этого воспользуемся теоремой Пифагора:


А теперь найдём объём параллелепипеда:

V = 15 ∙ 20 ∙ 25 = 7500 см3

Ответ: V = 7500 см3.

№ 2.Найдите площадь закрашенной фигуры, если объём прямоугольного параллелепипеда равен 960 см3, AB = 8 см, АА1 = 20 см.

Варианты ответов:

220 см2

100 см2

400 см2

200 см2

Решение.

Найдём длину АD:

AD = 960 : 8 : 20 = 6 см

Найдём АС, воспользовавшись теоремой Пифагора:

Закрашенная фигура – прямоугольник. Вычислим его площадь: 10∙20= 200 см2.

Ответ: площадь закрашенной фигуры 200 см2.

Куб можно рассматривать как прямоугольный параллелепипед с одинаковыми измерениями. Поэтому для вычисления его объема надо умножить ребро куба само на себя дважды, то есть возвести его в куб.

Задание 1. Вычислите объем куба с ребром 8 метров.

Решение. Просто возводим сторону ребро куба в третью степень:

Задание 2. Если ребро куба увеличить на 2 дм, то его объем вырастет на 98 дм3. Какова длина ребра этого куба?

Решение. Обозначим длину ребра буквой х. Тогда объем куба будет составлять х3 дм. Если ребро увеличить на 2 дм, то оно будет иметь длину х + 2 дм, и тогда объем куба будет равен уже (х + 2)3 дм.

Условие задачи можно записать в виде уравнения:

(х +2)3 = 98

 

 Это квадратное уравнение имеет два корня, 3 и (– 5), что можно проверить с помощью теоремы Виета. Корень х = – 5 не имеет геометрического смысла, поэтому остается ответ х = 3. Ответ: 3 дм.

 

           Далее рассмотрим перевод единиц измерения объема.

 Например, как перевести 1 м3 в кубические сантиметры?

Рассмотрим куб с ребром 1 м. Ясно, что его объем будет равен 1 м3. С другой стороны, можно сказать, что длина ребра этого куба составляет 100 см: Тогда объем этого куба можно посчитать так: 1003  = 1000000  см3    Аналогично можно переводить и другие единицы измерения.

 

Привальная четырехугольная призма.       

 Свойства правильной четырехугольной призмы.

         Основания правильной четырехугольной призмы – это 2 одинаковых квадрата;

  • Верхнее и нижнее основания параллельны;
  • Боковые грани имеют вид прямоугольников;
  • Все боковые грани равны между собой;
  • Боковые грани перпендикулярны основаниям;
  • Боковые ребра параллельны между собой и равны;
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям;
  • Углы перпендикулярного сечения - прямые;
  • Диагональное сечение правильной четырехугольной призмы является прямоугольником;
  • Перпендикулярное (ортогональное сечение) параллельно основаниям.

 Формулы для правильной четырехугольной призмы.

 


ЗАДАНИЕ

1. Составить таблицу, в которой указать площади боковой и полной поверхности, а также объёма куба, параллелепипеда, призмы.

2. Выполнить тест «Объёмы призмы»Геометрические фигуры. Призма. Объем призмы.

 


 



















Комментариев нет:

Отправить комментарий

  УРОК №114 19.03.2024. ГРУППА 601. ФИЗИКА  Контрольная работа по теме: “Законы постоянного тока” Вариант 1. Часть А А1. Электрический ток ...