ГРУППА 208. ФИЗИКА. ТЕМА. «ИЗОТОПЫ. ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ ИЗОТОПОВ»
Существуют вещества, тождественные по своим химическим свойствам, но имеющие совершенно различные радиоактивные свойства.
Эти элементы были помещены в одну и ту же клетку периодической системы. Их назвали (в 1911г. Содди) изотопами.
Изотопы - разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу.
Например, водород имеет три изотопа: 1 H1 – протий; 1 H2 – дейтерий; 1H3 – тритий. Они имеют одинаковое число протонов в ядре, но различное число нейтронов.
У изотопов заряды ядер атомов одинаковы, а значит число электронов в оболочках атомов одинаковы, и, следовательно, химические свойства изотопов одинаковы. Массы ядер различны. Причём ядра могут быть как радиоактивными, так и стабильными.
Существование изотопов доказывает, что заряд атомного ядра определяет не все свойства атома, а лишь его химические свойства.
Радиоактивность - превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения.
В природе встречаются как стабильные изотопы, так и нестабильные - радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам радиоактивного распада). Сейчас известно около 270 стабильных изотопов. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше. Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов - 10 обнаружено у олова, у железа, например, их - 4, у ртути - 7.
С помощью ядерных реакций можно получить радиоактивные изотопы всех химических элементов. Получают их на ускорителях электронных частиц и атомных реакторах. Их еще называют "меченые атомы".
Радиоизотопная диагностика -- применение радиоактивных изотопов и меченых соединений для исследования органов и систем человека с целью распознавания болезней. Основным методом радиоизотопной диагностики является метод радиоактивной индикации, т. е. способ наблюдения за введенными в организм радиоактивными веществами.
Радиоактивные изотопы ряда химических элементов являются источниками ионизирующих излучений, которые с помощью специальных радиометрических и записывающих устройств могут быть зарегистрированы после введения изотопа в организм человека с большой степенью точности. Современная радиологическая аппаратура позволяет улавливать и изучать крайне малые количества радиоактивных соединений (так наз. индикаторные количества), которые практически безвредны для организма обследуемого. Регистрируя распределение, перемещение, превращение и выведение из организма радиоактивных индикаторов, врач получает возможность судить об участии соответствующих элементов в биохимических и физиологических процессах в организме. Среди многочисленных методов радиоизотопной диагностики наибольшее распространение получили лабораторная радиометрия, клиническая радиометрия, клиническая радиография и сканирование. Радиоизотопное сканирование внутренних органов дает возможность определить расположение в организме исследуемого органа, установить его форму и размеры и выявить наличие в нем ряда патологических изменений. Основным преимуществом радиоизотопных методов исследования является их совершенная безболезненность и практическая безопасность для больного при высокой точности диагностических результатов.
Одним из наиболее выдающихся исследований явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).
Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.
Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.
Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высокопродуктивные микроорганизмы, применяемые в производстве антибиотиков
. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили радиоактивные изотопы в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 15 32P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения.
Радиоуглеродный анализ -- физический метод датирования биологических останков, предметов и материалов биологического происхождения путём измерения содержания в материале радиоактивного изотопа 14C по отношению к стабильным изотопам углерода.. Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате ?-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели. Таким методом узнают возраст египетских мумий, остатков доисторических костров и т. д.
Радиоактивный метод анализа вещества дает возможность определить содержание в нем различных металлов от кальция до цинка, в чрезвычайно малых концентрациях - до 1-10г. (при этом требуется всего лишь 10-12г. вещества). Радиоактивные препараты широко используются в медицинской практике для лечения многих заболеваний, в том числе и злокачественных опухолей. Изотопы плутония-238, кюрия-224 применяются для производства батарей небольшой мощности для стабилизаторов ритма сердца. Для их непрерывной работы в течение 10 лет достаточно всего 150-200 мг плутония (обычные батареи служат до четырех лет).
Радиоизотопные источники энергии -- устройства различного конструктивного исполнения, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию. Радиоизотопный источник энергии принципиально отличается от атомного реактора тем, что в нём используется не управляемая цепная реакция, а энергия естественного распада радиоактивных изотопов. Радиоизотопные источники энергии применяются там, где необходимо обеспечить автономность работы оборудования, значительную надёжность, малый вес и габариты. В настоящее время основные области применения -- это космос (спутники, межпланетные станции и др.), глубоководные аппараты, удаленные территории (крайний север, открытое море, Антарктика). Вообще, попросту говоря, изучение «глубокого космоса» без радиоизотопных генераторов невозможно, так как при значительном удалении от Солнца уровень солнечной энергии, который можно использовать посредством фотоэлементов, мал. Например, на орбите Сатурна освещенность Солнцем в зените соответствует земным сумеркам. Кроме того, при значительном удалении от Земли для передачи радиосигналов с космического зонда требуется очень большая мощность. Таким образом, единственным возможным источником энергии для космических аппаратов в таких условиях, помимо атомного реактора, выступает именно радиоизотопный генератор. Существующие области применения:
· Межзвездные зонды: Электротеплопитание космических аппаратов.
· Медицина: электропитание электрокардиостимуляторов и др.
· Энергопитание маяков и бакенов.
Перспективные области применения:
· Роботы-андроиды: Электротеплопитание. Как основной источник энергии.
· Боевые лазеры космического базирования: Накачка лазеров и электротеплопитание.
· Боевые машины: Мощные двигатели с большим ресурсом (беспилотные разведывательные аппараты -- самолеты и мини-лодки, энергопитание боевых вертолетов и самолетов, а также танков и автономных пусковых установок).
· Глубоководные гидроакустические станции: длительное энергопитание невозвращаемых аппаратов.
Радиоактивные изотопы и соединения, меченные радиоактивными изотопами, широко применяются в самых разных областях человеческой деятельности. Промышленность и технологический контроль, сельское хозяйство и медицина, средства связи и научные исследования -- охватить весь спектр применения радиоактивных изотопов практически невозможно, хотя все они возникли чуть более, чем за 100 лет.
ЗАДАНИЕ:
1. Составьте конспект, ответив на вопросы:
А) что такое изотопы?
Б) чем отличаются изотопы друг от друга?
В) что такое «тяжёлая вода?
г) кто впервые предположил о возможности существования изотопов?
д) как получают радиоактивные изотопы?
е) где используют радиоактивные изотопы?
2. Подготовьте реферат на тему ( выбираете одну):
А) Получение радиоактивных изотопов
Комментариев нет:
Отправить комментарий