2 3.11.2021г. ГРУППА 206. МАТЕМАТИКА. Тела вращения. Цилиндр
Перечень вопросов, рассматриваемых в теме:
- тело вращения;
- цилиндрическая поверхность, её образующая; цилиндр, все его элементы и сечения;
- площади поверхностей цилиндра.
Цилиндрическая поверхность – это поверхность, образованная прямыми, проходящими через все точки окружности, перпендикулярными плоскости, в которой лежит эта окружность.
Эти прямые – образующие цилиндрической поверхности.
Прямая, проходящая через центр окружности, перпендикулярно к плоскости – ось цилиндрической поверхности.
Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами.
Круги – основания цилиндра; отрезки образующих, заключённые между основаниями – образующие цилиндра; образованная ими часть цилиндрической поверхности – боковая поверхность.
Ось цилиндрической поверхности называется осью цилиндра.
Длина образующей называется высотой цилиндра, а радиус основания – радиусом цилиндра.
Сечение – изображение фигуры, образованной рассечением тела плоскостью.
Осевое сечение – вариант сечения, при котором плоскость проходит через ось тела.
Развёртка боковой поверхности цилиндра – прямоугольник, одна сторона которого равна высоте цилиндра, а другая длине окружности основания.
Основная литература:
Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций: базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс.
Открытые электронные ресурсы:
Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177
Теоретический материал для самостоятельного изучения
1. Основные определения
Определение
Цилиндрической поверхностью называется поверхность, образованная прямыми, проходящими через все точки окружности, перпендикулярными плоскости, в которой лежит эта окружность (см.рис.).
Определение
Сами прямые называют образующими цилиндрической поверхности.
Определение
Прямая,проходящая через точку О, перпендикулярно к плоскости, называется осью цилиндрической поверхности.
Так как все образующие и ось перпендикулярны плоскости 𝛂, значит они параллельны друг другу (вспомнить теорему «Если две прямые перпендикулярны к плоскости, то они параллельны»).
Если построить ещё одну плоскость 𝛃, которая будет параллельна плоскости 𝛂, то отрезки образующих, заключённые между плоскостями 𝛂 и 𝛃 будут параллельны и равны друг другу (вспомнить свойство параллельных плоскостей «отрезки параллельных прямых, заключённые между параллельными плоскостями, равны»). Точки, являющиеся концами отрезков параллельных прямых и лежащие в плоскости 𝛃, дают окружность, равную окружности, лежащей в плоскости 𝛂.
Определение
Тело, ограниченное цилиндрической поверхностью и двумя кругами (границы которых есть те самые равные окружности в плоскостях 𝛂 и 𝛃) называется цилиндром.
Определение
Круги называются основаниями цилиндра, отрезки образующих, заключённые между основаниями, - образующими цилиндра, а образованная ими часть цилиндрической поверхности – боковой поверхностью цилиндра.
Определение
Ось цилиндрической поверхности называется осью цилиндра.
Определение
Длина образующей называется высотой цилиндра (все образующие равны и параллельны), а радиус основания – радиусом цилиндра.
Также цилиндр можно получить вращением прямоугольника вокруг одной из сторон. Тогда эта сторона (вокруг которой происходит вращение) будет совпадать с осью цилиндра, противоположная сторона будет образовывать боковую поверхность, а две оставшиеся стороны образуют верхнее и нижнее основания, одновременно являясь радиусами цилиндра.
2. Сечения цилиндра различными плоскостями
Пусть секущая плоскость проходит через ось цилиндра. Такое сечение называют осевым. Оно представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра.
Если секущая плоскость проходит параллельно оси цилиндра, но не содержит саму ось, то сечение является прямоугольником две стороны которого – образующие, а две другие – отрезки, соединяющие эти образующие в верхнем и в нижнем основании (ЗАМЕЧАНИЕ: эти отрезки меньше диаметров оснований цилиндра).
Основные формулы
Формула для вычисления площади боковой поверхности цилиндра: Sбок=2𝛑RL.
То есть площадь боковой поверхности равна произведению длины окружности основания цилиндра на его высоту.
Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. В виде формулы это можно записать так: Sполн=2𝛑R(R+L).
Примеры и разбор решения заданий тренировочного модуля
1. Дан цилиндр.
Выберите значение площади его боковой поверхности
1) 60π
2) 192π
3) 120π
4) 36π
Решение:
Площадь боковой поверхности вычисляется по формуле: S=2πRL.
R=6, L=10
Подставим: S=2π·6·10=120π.
Ответ: 3) 120π
2. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу 1200. Образующая цилиндра равна 6
Решение:
Сделаем чертеж:
По условию задачи ∟АОВ=1200, ВС= 6
Расстояние от оси до секущей плоскости - отрезок ОН=1.
Найдем сторону АВ сечения.
∆ОНВ - прямоугольный.
В ∆ОНВ: ОН=1, ∟НОВ=600.
НВ=ОН·tg600=1·
Sсеч=6
Ответ: 18
3. Высота цилиндра на 6 больше его радиуса, площадь полной поверхности равна 144π. Найдите его образующую.
Решение:
Sполн =2πR(R+L)
По условию задачи L=R+6.
144π=2πR(R+R+6).
Получили квадратное уравнение относительно радиуса:
R2+6R-72=0
R=-12 или R=6. Так как длина радиуса не может быть отрицательной, получаем значение: R=6. Тогда образующая цилиндра равна 12.
Ответ: 12.
ЗАДАНИЕ:
1.Запишите в тетрадь все определения, зарисуйте необходимые рисунки.
2. Решить самостоятельно задачи: № 523, 529 на стр. учебника 133.
Комментариев нет:
Отправить комментарий